《万物简史》

下载本书

添加书签

万物简史- 第15部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
放射量,在以多快的速度衰变,你就可以推算出它的年龄。他测试了一块沥青铀矿石铀的主要矿石发现它已经有7 亿年比大多数人认为的地球的年龄还要古老。
  1904年春,卢瑟福来到伦敦给英国皇家科学研究所开了一个讲座该研究所是伦福德伯爵创建的,只有150 年历史,虽然在那些卷起袖子准备大干一场的维多利亚时代末期的人看来,那个搽白粉、戴假发的时代已经显得那么遥远。卢瑟福准备讲的是关于他新发现的放射现象的蜕变理论;作为讲课内容的一部分,他拿出了那块沥青铀矿石。卢瑟福很机灵地指出因为年迈的开尔文在场,虽然不总是全醒着开尔文本人曾经说过,要是发现某种别的热源,他的计算结果会被推翻。卢瑟福已经发现那种别的热源。多亏了放射现象,可以算出地球很可能不言而喻就是要比开尔文最终计算出的结果2 400 万年古老得多。
  听到卢瑟福怀着敬意的陈述,开尔文面露喜色,但实际上无动于衷。他拒不接受那个修改的数字,直到临终那天还认为自己算出的地球年龄是对科学最有眼光、最重要的贡献要比他在热力学方面的成果重要得多。
  与大多数科学革命一样,卢瑟福的新发现没有受到普遍欢迎。都柏林的约翰·乔利到20世纪30年代还竭力认为地球的年龄不超过8900万年,坚持到死也没有改变。别的人开始担心,卢瑟福现在说的时间是不是太长了点。但是,即使利用放射性测定年代法,即后来所谓的衰变计算法,也要等几十年以后我们才得出地球的真正年龄大约是在10亿年以内。科学已经走上正轨,但仍然任重而道远。
  开尔文死于1907年。德米特里·门捷列夫也在那年去世。和开尔文一样,他的累累成果将流芳百世,但他的晚年生活显然不大平静。随着人越来越老,门捷列夫变得越来越古怪他拒不承认放射现象、电子以及许多别的新鲜东西的存在也越来越难以相处。在最后的几十年里,无论在欧洲什么地方,他大多怒气冲冲地退出实验室和课堂。1955年,第101 号元素被命名为钔,作为对他的纪念。“非常恰当,”保罗·斯特拉森认为,“它是一种不稳定的元素。”
  当然,放射现象实际上在不停地发生,以谁也估计不到的方式发生。20世纪初,皮埃尔·居里开始出现放射病的明显症状骨头里隐隐作痛,经常有不舒服的感觉那些症状本来肯定会不断加剧。但是,我们永远也无法确切知道,因为他1906年在巴黎过马路时被马车撞死了。
  玛丽·居里在余生干得很出色,1914年帮助建立了著名的巴黎大学铀研究所。尽管她两次获得诺贝尔奖,但她从来没有当选过科学院院士。在很大程度上,这是因为皮埃尔死了以后,她跟一位有妻室的物理学家发生了暧昧关系。她的行为如此不检点,连法国人都觉得很丢脸至少掌管科学院的老头儿们觉得很丢脸。当然,这件事也许跟本书不相干了。
  在很长时间里,人们认为,任何像放射性这样拥有很大能量的现象肯定是可以派上用场的。有好几年时间,牙膏和通便剂的制造商在自己的产品里放入了有放射作用的钍;至少到20世纪20年代,纽约州芬格湖地区的格伦泉宾馆(肯定还有别的宾馆)还骄傲地以其“放射性矿泉”的疗效作为自己的特色。直到1938年,才禁止在消费品里放入放射性物质。到这个时候,对居里夫人来说已经为时太晚。她1934年死于白血病。事实上,放射性危害性极大,持续的时间极长,即使到了现在,动她的文献甚至她的烹饪书还是很危险的。她实验室的图书保存在铅皮衬里的箱子里,谁想看这些书都得穿上保护服。
  多亏第一代原子科学家的献身精神和不惧高度危险的工作,20世纪初的人们越来越清楚,地球毫无疑问是很古老的,虽然科学界还要付出半个世纪的努力才能很有把握地说它有多么古老。与此同时,科学很快要进入一个新时代原子时代。
  第八章 爱因斯坦的宇宙
  随着19世纪渐渐远去,科学家们可以满意地回想,他们已经解开物理学的大部分谜团。
  我们略举数例:电学、磁学、气体学、光学、声学、动力学及统计力学,都已经在他们的面前俯首称臣。他们已经发现了X 射线、阴极射线、电子和放射现象,发明了计量单位欧姆、瓦特、开尔文、焦耳、安培和小小的尔格。
  凡是能被振荡的,能被加速的,能被干扰的,能被蒸馏的,能被化合的,能被称质量的,或能被变成气体的,他们都做到了;在此过程中,他们提出了一大堆普遍定律。这些定律非常重要,非常神气,直到今天我们还往往以大写来书写:“光的电磁场理论”、“里氏互比定律”、“查理气体定律”、“体积结合定律”、“第零定律”、“原子价概念”、“质量作用定律”等等,多得数也数不清。整个世界丁丁当当、喀嚓喀嚓地回响着他们发明创造出来的机器和仪器的声音。许多聪明人认为,科学家们已经没有多少事可干了。
  1875年,德国基尔有一位名叫马克斯·普朗克的年轻人犹豫不决,不知道这辈子究竟是该从事数学还是该从事物理学。人们由衷地劝他不要选择物理学,因为物理学的重大问题都已得到解决。他们斩钉截铁地告诉他,下个世纪将是个巩固和提高的世纪,不是个革命的世纪。普朗克不听,他钻研理论物理学,潜心投入了热力学的核心问题熵的研究工作。
  在一个雄心勃勃的年轻人看来,研究这个问题似乎很有前途。1891年,他做出了成果,却吃惊地发现,关于熵的这项重要工作实际上已经有人做过。他是耶鲁大学一位离群索居的学者,名叫J。威拉德·吉布斯。
  吉布斯是个很杰出的人物,但大多数人也许没有听说过。他行为检束,很少抛头露面。
  除了去欧洲搞了三年研究以外,他的一辈子差不多都是在一个三个街区的范围之内度过的:一边是他的家,一边是耶鲁大学在康涅狄格州纽黑文的校园。在耶鲁大学的最初十年里,他连工资都懒得去领。(他有另外的收入。)从1871年起,他成为该大学的一名教授,直到1903年去世。在此期间,每学期选他的课的学生平均只有一名。他写的东西晦涩难懂,经常使用自己发明的符号,许多人觉得简直是天书。但是,在那些神秘的公式深处,隐藏着最英明、最深刻的见解。
  1875…1878 年期间,吉布斯写出了一系列论文,编成了《论多相物质的平衡》的集子。
  该书出色地阐述了近乎一切热力学原理用威廉·H。库珀的话来说,包括“气体、混合物、平面、固体、相移。。。。。。化学反应、电化电池、沉淀以及渗透”。归根结底,吉布斯想要表明,热力学不仅适用于蒸汽机这样的庞大而又嘈杂的范围里的热量和能量,而且在化学反应的原子层面上也同样存在,而且影响很大。吉布斯的《平衡》一直被称为“热力学原理”,但出于无法猜测的原因,吉布斯情愿将这些具有划时代意义的见解发表在《康涅狄格州艺术与科学院学报》上,那是一份即使在康涅狄格州也毫无名气的杂志。这就是为什么普朗克直到很晚的时候才听说他的名字的原因。
  普朗克没有泄气哎呀,也许稍稍有点胆怯,开始把注意力转向别的问题。1 这方面的事,我们等一会儿再说,先稍稍地(而又恰当地)换个方向,前往俄亥俄州的克利夫兰,去一家当时被称为凯斯实用科学学校的机构。19世纪80年代,那里有一位刚到中年的物理学家,名叫阿尔伯特·迈克尔逊。他在他的朋友化学家爱德华·莫雷的协助之下,进行了一系列试验。那些试验得出了很有意思而又令人吃惊的结果,将对以后的许多事情产生重大的影响。
  迈克尔逊和莫雷所做的实际上是在无意之中所做的破坏了长期以来人们对一种所谓光以太的东西的信念。那是一种稳定、看不见、没有重量、没有摩擦力、不幸又完全是想像出来的媒质。据认为,这种媒质充满宇宙。以太是笛卡儿假设的,牛顿加以接受,之后差不多人人都对它怀有崇敬之情,在19世纪物理学中占有绝对的中心地位,用来解释为什么光能够在空荡荡的太空里传播。它在19世纪初尤其必不可少,因为光和电磁在这时候被看成是波,也就是说某种振动。振动必须在什么东西里面才能发生,因此,就需要一种以太,并长期认为存在一种以太。直到1909年,伟大的英国物理学家J。J。汤姆森仍坚持说:“以太不是哪位爱好思索的哲学家的凭空想像,它对我们来说就像我们呼吸的空气那样不可缺少。”他说这番话4 年多以后,就无可争议地确定以太并不存在。总而言之,人们确实离不开以太。
  如果你需要说明19世纪的美国是个机会之乡的理念,那么你很难再找到像阿尔伯特·迈克尔逊这样的例子。他1852年生于德国和波兰边境地区的一个贫苦的犹太商人家庭,小时候随家人来到美国,在加利福尼亚州一个淘金热地区的矿工村里长大。他的父亲在那里做干货生意。家里太穷,他上不起大学,便来到首都华盛顿,在白宫的正门口游来晃去,希望能在尤利塞斯·S。格兰特每天出来散步时碰上这位总统。(那显然是个比较朴实的年代。)在这样散步的过程中,迈克尔逊深深博得了总统的欢心,格兰特竟然答应免费送他去美国海军学院学习。就是在那里,迈克尔逊攻读了物理学。
  10年以后,迈克尔逊已经是克利夫兰凯斯学校的一名教授,开始有兴趣测量一种名叫以太漂移的东西运动物体穿越空间所产生的一种顶头风。牛顿物理学的预言之一是,在观察者看来,光在穿越以太过程中的速度是不一样的,取决于观察者是朝着还是逆着光源的方向移动。但谁也想不出对此进行测量的方法。迈克尔逊突然想到,地球有半年时间是朝着太阳的方向运动,有半年时间是逆着太阳的方向运动的。他认为,只要在相对的季节里进行仔细测量,把两者之间光的运动速度进行比较,就能找到答案。
  迈克尔逊说服电话的发明者、刚刚发了财的亚历山大·格雷厄姆·贝尔提供资金,制造了一台迈克尔逊自己设计的巧妙而灵敏的仪器,名叫干涉仪,用来非常精确地测定光的速度。接着,在和蔼而又神秘的莫雷的协助下,迈克尔逊进行了几年的精心测量。这是一件非常细致而又很花力气的活儿,迈克尔逊的精神一下子完全垮了,工作不得不中断了一段时间。
  但是,到1887年,他们有了结果。而且,这个结果完全出乎这两位科学家的意料。
  加州理工大学天体物理学家基普·S。索恩写道:“结果证明,光的速度在各个方向、各个季节都是一样的。”这是200 年来实际上恰好是200 年出现的第一个迹象,说明牛顿定律也许不是在任何时候、任何地方都适用的。用威廉·H。克罗珀的话来说,迈克尔逊… 莫雷结果成为“很可能是物理学史上最负面的结果”。为此,迈克尔逊获得了诺贝尔物理学奖从而成为获此殊荣的第一位美国人但要过20年之后。与此同时,迈克尔逊… 莫雷实验像一股霉味那样令人不快地浮动在科学家的脑海深处。
  令人注目的是,尽管他有了这项发现,当20世纪来到的时候,迈克尔逊觉得自己和别人一样,认为科学工作快要走到尽头用一位作者在《自然》杂志上的话来说:“只要添上几个角楼和尖顶,在房顶上刻几处浮雕就够了。”
  当然,实际上,世界即将进入一个科学的世纪。到时候,谁都会懂得一点,谁都不会什么都懂。科学家快要发现自己在粒子和反粒子的汪洋大海里漂浮,东西瞬间存在,瞬间消失,使毫微秒时间也显得十分缓慢,平平常常,一切都是那么古怪。科学正从宏观物理学向微观物理学转变。前者,物体看得见,摸得着,量得出;后者,事情倏忽发生,快得不可思议,完全超出了想像的范围。我们快要进入一个量子时代,而推动其大门的第一人就是那位迄今为止一直很倒霉的马克斯·普朗克。
  1900年,普朗克42岁,已是柏林大学的理论物理学家。他揭示了一种新的“量子理论”
  ,该理论认为,能量不是一种流水般连续的,而是一包包地传送的东西,他称其为量子。这确实是一种新奇的概念,而且是一种很好的概念。从短期来说,它能为迈克尔逊… 莫雷实验之谜提供一种解释,因为它表明光原来不一定是一种波动。从长远来说,它将为整个现代物理学奠定基础。无论如何,它是第一个迹象,表明世界快要发生变化。
  但是,划时代意义的事件一个新时代的黎明要到1905年才发生。当时,德国的物理学杂志《物理学年鉴》发表了一系列论文,作者是一位年轻的瑞士职员。他没有上过大学,没有用过实验室,通常跑的也只是伯尔尼国家专利局的小小图书馆。他是专利局的三级技术审查员。(他申请提升为二级审查员,但遭到了拒绝。)
  他的名字叫阿尔伯特·爱因斯坦。在那个重要的一年,他向《物理学年鉴》递交了五篇论文,用C。P。斯诺的话来说,其中三篇“称得上是物理学史上最伟大的作品”一篇使用普朗克刚刚提出的量子理论审视光电效应,一篇论述悬浮小粒子的状况(即现在所谓的布朗运动),一篇概述了狭义相对论。
  第一篇解释了光的性质(还促使许多事情成为可能,其中包括电视),为作者赢得了一个诺贝尔奖。第二篇提供了证据,证明原子确实存在令人吃惊的是,这个事实过去一直存在一些争议。第三篇完全改变了世界。
  爱因斯坦1879年生于德国南部的乌尔姆,但在慕尼黑长大。他的早年生活几乎难以说明他将来会成为大人物。大家都知道,他到三岁才学会说话。19世纪90年代,他父亲的电器生意破产,举家迁往米兰,但这时候已经十来岁的阿尔伯特去了瑞士继续他的学业虽然他一开始就没有通过大学入学考试。1896年,他放弃了德国籍,
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架